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Summary 
Infectious disease outbreaks challenge societies by creating dynamic stochastic infection 
networks between human individuals in geospatial and demographical contexts. Minimizing 
human and socioeconomic costs of SARS-CoV-2 and future global pandemics requires data-
driven and context-specific integrative modeling of detection-tracing, healthcare, and non-
pharmaceutical interventions for decision-processes and reopening strategies. Traditional 
population-based epidemiological models cannot simulate temporal infection dynamics for 
individual human behavior in specific geolocations. We present an integrated geolocalized 
and demographically referenced spatio-temporal stochastic network- and agent-based model 
of COVID-19 dynamics for human encounters in real-world communities. Simulating 
intervention scenarios, we quantify effects of protection and identify the importance of early 
introduction of test-trace measures. Critically, we observe bimodality in SARS-CoV-2 infection 
dynamics so that the outcome of reopening can flip between good and poor outcomes 
stochastically. Furthermore, intervention effectiveness depends on strict execution and 
temporal control i.e. leaks can prevent successful outcomes. Schools are in many scenarios 
hubs for transmission, reopening scenarios are impacted by infection chain stochasticity and 
subsequent outbreaks do not always occur. This generalizable geospatial and individualized 
methodology is unique in precision and specificity compared to prior COVID-19 models [6, 16, 
17, 19] and is applicable to scientifically guided decision processes for communities world-
wide. 
 
Main 
As the SARS-CoV-2 pandemic is spreading around the world it is inflicting multi-dimensional 
damage to humanity: millions of COVID-19 cases are bringing healthcare systems close to 
collapse, halting or suppressing global and local economies, and normal human life. In 
response, countries and communities are scrambling to fight the virus with a series of 
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different interventions (mitigation measures) and strategies aimed at preventing new 
infections whilst providing optimal treatment of patients and aiming to reopen societies and 
economies as quickly as possible. To assist governments in choosing between different 
intervention and reopening strategies, data-driven mathematical and computational 
modeling can predict the trajectory and severity of infection outbreaks, the expected number 
of fatalities and the effect of different interventions.  
Considering the lack of information about the disease (COVID-19) but also its near- and long-
term impact on healthcare systems and societies, precise and context specific models are 
required for deciding optimal strategies for reopening and allowing populations to return to 
work and social life. To understand transmission of SARS-CoV-2/COVID-19 and to guide such 
decision processes in a geolocation-specific manner, detailed simulation of prolonged or 
intermittent patterns of social/physical distancing is required in order to prevent healthcare 
systems and communities from collapsing. Therefore, it’s essential to capture the stochastic 
nature of individual transmission events. Traditional epidemiological/statistical models 
cannot make predictions in a geospatial temporal manner based on human individuals in a 
community and cannot for example capture local particularities. Thus, the challenge is to 
conduct spatio-temporal simulations of transmission networks with real-world geospatial and 
georeferenced information of the dynamics of the transmission and disease progression and 
the effect of different intervention strategies such as isolation of infected individuals or 
location closures. 
Here, we present a comprehensive agent-based model that incorporates the clinically 
described stages of SARS-CoV-2 infection, COVID-19 disease and recovery. It incorporates 
demographic data, realistic daily schedules and, importantly, the physical location of 
individuals. We comparatively simulate and analyze different tailored scenarios and non-
pharmaceutical interventions, depending on the location (e.g., workplace, school, public 
places such as shopping malls, etc.) but also on the actual time of day. To this end, we have 
integrated a large amount of publicly available data, e.g., on locations, age distribution, 
household composition, daily occupation and schedule, geographical information, and 
sociological data for typical numbers and types of social contacts in the population.  
By means of spatial, georeferenced and demographic stochastic modelling of COVID-19 
infection networks, we present new insights into the pandemic and decision support for (non-
pharmaceutical) intervention and exit strategies. 
 
Results 
 
An individualized GEoReferenced Demographic Agent-based model (GERDA) 

We model the virus propagation and effects of non-pharmaceutical interventions within a 
concrete population (Fig. 1). The model tracks a number of individuals with specific infection 
states at specific physical locations over time. Due to its geospatial design, GERDA makes use 
of the actual number of residential buildings, workplaces, schools or public places in a given 
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community as the space for potential infection chain initiation by human contact. As an 
example, we used data from the municipalities of Gangelt and Heinsberg (Supplementary Fig. 
2), which experienced significant and early COVID-19 outbreaks. Gangelt had more than 300 
confirmed cases among 12,000 inhabitants with the outbreak after a carnival event in March 
2020 followed by widespread transmission within the community. This outbreak is one of the 
best-characterized worldwide with comprehensive epidemiological monitoring and sampling, 
which renders this municipality a solid starting point for developing GERDA. 

In the model a human being is described as an autonomous agent who is always present at 
one specific physical location at any given time point. The location can be one of the following 
types: residential buildings (home), work places, schools, hospitals, and public places; 
deceased individuals are assigned to a morgue location. These locations are initialized 
automatically from openly available data for a given municipality using geospatial data from 
OpenStreetMap (Methods). The population is initialized with demographic data specific to 
the geolocation (municipality) from the relevant census resulting in representative age 
distributions and household compositions. Every individual has three features: an age (in 
years), a weekly schedule resolved by the hour, and a health status. The weekly schedule 
determines an individual’s presence in each of the possible location types at each hour. 
Schedules can change with health state and interventions. The health status for individuals 
are: susceptible (S), infected (I), recovered (R) or dead (D). Infected individuals (I) can obtain 
sub-states specifying their condition as diagnosed (Id), hospitalized (Id

H), or being in an ICU 
(Id

ICU). 

The model is initiated with a basic initialization of households, workplaces, public places, 
schools, a hospital, and a morgue as well as a total number of infected individuals. The latter 
originates from assigning a household (randomly drawn from the demographic distribution) 
to each residential building. 
 
During the simulation, agents visit locations specified by their respective schedules and the 
infection spreads across the spatio-temporal network of interacting agents, resulting in a 
contact pattern (Fig. 1b and Supplementary Fig. 11) resembling the data by Zhang et al [17].  
This spatio-temporal network, defined by periodically recurring movement patterns, 
constitutes the environment in which the agents interact and the infection spreads. Agents 
operate in defined sub-networks, specified by regularly visited locations. 
 
Absence of interventions leads to an uncontrolled outbreak trajectory 
The baseline scenario simulates the trajectory of infection progression in absence of any 
interventions and provides a benchmark (spread of both diagnosed and undiagnosed 
infection) for evaluating subsequently introduced interventions (Fig. 2). The time courses for 
states (S), (I), (R) and (D) as well as substates (Id), (Id

H), and (Id
ICU) are simulated with 100 

repetitions (Fig. 2a,b); age-dependent trajectories are also available (Supplementary Fig. 1). 
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Reflecting the progression of the outbreak, the regular visits to different locations by 
individuals within the community (e.g. public places predominantly during weekends and 
workplaces/schools during weekdays) changes towards diagnosed citizens staying at home or 
in the hospital (Fig. 2c,d). An increasing number of deceased individuals is assigned to the 
morgue.  
 
The model parameters are based on published data for transition periods between infection 
and diagnosis, diagnosis and hospitalization, frequencies of need for ICU as well as death rates 
(Methods). In order to verify that the model simulations reflect these underlying data in a 
satisfactory manner, we determined distributions of transition frequencies per unit of time 
for the different state transitions considered in our model (Fig. 2e). These frequencies agree 
well with the frequencies reported in literature, although not all necessary values for all age 
groups have been published yet. 
 
Deploying GERDA we simulated the infection spreading in two German communities (Gangelt 
and Heinsberg), a British (Epping) and a Swedish community (Vaxholm near Stockholm). 
Simulations show that in all four communities, major infection transmission hubs are 
locations at which people from different ages and subgroups meet (schools in Gangelt, public 
places in Heinsberg and Vaxholm; Fig. 2 and Supplementary Fig. 2), rendering closure of these 
a likely effective way to interrupt infection chains. One possible explanation is the size 
difference between the two, i.e., e.g. having more schools decreases the impact of each of 
them, rendering public spaces that allow interactions between diverse otherwise completely 
isolated subgroups more influential and important for infection transmission. Even though 
this hypothesis warrants further studies, the fact that closure of one location type in one 
municipality might sufficiently interrupt infection chains while in another it might not prevent 
the infection wave showcases the criticality of real-world data for informed decision making. 
 
The temporal and spatial dynamics of infection spreading resulting from the simulation of the 
baseline scenario is visualized in Movie 1  
[https://www.tbp-klipp.science/GERDA/Movie-1.mp4] with a still image in Fig. 1. It is 
important to note that the daily rhythm shown in the movie results from individuals moving 
between their respective homes and workplaces. The infection starts with two infected 
individuals in one household at time 0 h. At times 100 h and 200 h more and more infected 
agents are observed, especially at the geospatial hubs (e.g., center of the town).  
 
Effectiveness of non-pharmaceutical interventions depends on duration and stringency 
In order to analyze the effect of interventions such as lockdowns or contact prohibition, we 
tested a series of scenarios (Fig. 3): (i) Scaling of the infectivity as proxy for wearing face masks 
or keeping physical distance, (ii) Selective closure of public spaces such as schools, general 
public spaces, workplaces or a combination of these, and (iii) Effect of influx of infected 
people. 
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Here, we have compared the baseline scenario with infectivity values of kinf=0.30 (indicating 
typical behavior) and values lower than 0.3 corresponding to different levels of social 
distancing (Supplementary Fig. 3). As example, kinf=0.15 means the probability to get infected 
when meeting an infected individual is decreased by 50% (Fig. 3e). Reduced infectivity leads 
to a slower infection wave with a lower and later peak of (I). Ultimately, fewer people are 
infected and move to the recovered state because the overshoot in infected individuals is 
reduced [5]. Variation of infectivity between 0.03 and 0.3 leads to a pronounced jump in the 
total number of infections at a value of about 0.06 (Fig. 3i). 
More restrictive interventions to influence the course of the epidemic analyzed with GERDA 
include closure of all locations except of homes and hospitals (i.e., workplaces, schools and 
public spaces) as well as reopening of all or selected locations or closure of selected locations 
(Fig. 3, 100 simulations each). Closure of all locations after 200 h (ca. 8 days) leads to 
significant reduction of the infection peak and final number of recovered individuals. 
However, the impact of measures strongly depends on early closure (Fig. 3j and 
Supplementary Fig. 4 and 15). Closing just a few days too late significantly increases the 
mortality, as has been described for example in the United Kingdom. Subsequent reopening 
of either schools, public or workplaces at about 500 h (ca. 20 days) results in a unique 
phenomenon, namely a bimodal behavior of the system. In this case, the infection ceases in 
some simulations, while generating a strong second peak in others (Fig. 3l and Supplementary 
Fig. 5 and 6 for variation of reopening time points).  
In contrast to the lockdown time, the total number of infections does not depend gradually 
but in bimodal fashion on the time of reopening, i.e. is either high or low with increasing 
probability of low infections for later reopening times (Fig. 3l and Supplementary Fig. 12). 
This is due to the stochastic nature of the process: the precise behavior of individuals is 
unpredictable, despite being regulated. The ratio of cases of declining and recurring infections 
varies between the scenarios, as well as the height of the second infection peak with the 
strongest peak when all public activities are resumed in the scenario “reopen all”. However, 
already selective opening of only schools bears a strong risk of a second infection outbreak.  
We also investigated what happens if a number of individuals will not follow the order for 
closure of all locations. This reflects either non-compliance (e.g. civil disobedience) or the fact 
that some people in systemically relevant jobs have to go to work or need to send their 
children to school (or daycare) to be able to go to work themselves. We see that already small 
levels of non-compliance have severe effects, i.e. 10% or 25% non-compliance would lead to 
a severe rise of infected and later recovered individuals (Fig. 3f,k and Supplementary Fig. 7 
and 13). 
Simulating the emergence of newly infected individuals from outside, e.g. due to travel or 
visits, a second infection peak is very likely as long as there is still a pool of susceptible 
individuals (Fig. 3g,h and Supplementary Fig. 8).  
In summary, the only perfect effective scenario to prevent a second outbreak is sufficiently 
long extension of full lockdown until no infectious individuals remain. These results have 
serious consequences for considering the reopening of societies and communities: In our 
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simulations, early reopening of schools or of all locations can lead to a strong second peak of 
infection, while reopening after sufficiently long closure is safe as long as no new infected 
individuals enter the community.  
 
Non-pharmaceutical interventions such as location closure reduce the effective reproduction 
number Reff 

The GERDA model can be used to monitor the effective reproduction number Reff in a time-
dependent fashion, as an emergent property of the modelled system (Fig. 4). In the baseline 
scenario with an infection rate 𝑘"#$ = 0.3 the value ranges between about 5.2 at the 
beginning of the infection wave and 0.71 at the end of the simulation period. When we reduce 
the infection rate to 𝑘"#$ = 0.15 mimicking medium social distancing, the values range 
between 3.5 and 0.66. Lockdown of schools, public and work leads to faster decline in Reff. 
The reopening of all or selected locations induces a second increase in Reff, the fastest for 
reopening of all locations. All lockdown and reopen scenarios ultimately end with Reff values 
of about 0.7. 
 
Network based benchmarking of tracing strategies 
Relationships between individual agents in GERDA constitute a network of hierarchical edge-
types, which can be reconstructed from the simulation (Fig. 4). The basal and most generic 
network is represented by the spatio-temporal overlap of agents visiting the same location at 
the same time (co-location network). The network of interactions between agents constitutes 
the second layer and is a sub-network of the co-location network. It comprises three different 
types of interactions, namely those that: (i) cannot lead to infection (none of the interaction 
partners is infectious), (ii) can potentially result in transmission, but do not (interaction 
between (S) and (I) without successful transmission), and (iii) result in transmission of 
infection from (I) to (S) (Fig. 4a, b).  
Inspired by recent efforts to develop tracing apps and in order to further elucidate the 
potential of this approach, we tested the efficacy of co-location and contact-based tracing 
methods, in particular at the onset of their application. Co-location tracing is realized by 
identifying individuals’ spatio-temporal overlap, contact-tracing by identifying the actual 
interactions (potentially facilitating infection transmission). Upon diagnosis of an infected 
individual, the (potential) transmission targets for the preceding 10 days are identified. The 
number of identified individuals differs vastly between the two methods, while the infection-
transmitting contacts are a subset of both of them. Thus, the expected proportion of positive 
results, when testing all traced contacts, is 20 times higher for the contact-based, than for the 
location-based tracing (with on average 50 vs 1000 required tests per identified case). 
The high dark figure of non-identified infectees leads to an average fraction of 15-20% of 
infections identifiable by tracing. Consequently, this identification rate will increase when 
incorporating recursive tracing into the model. Thus, otherwise hidden infectees are 
identified and subsequently isolated, resulting in early interruption of infection chains.  
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In the baseline scenario, the number of traced individuals rapidly approaches a significant 
proportion of the population (Fig. 4d), a process that is slowed if the infection rate is lowered 
by interventions. A timely adoption of contact tracing and collection of the required tracking 
data, prior to the first diagnosed case; are key for full exploitation of the short time frame 
with advantage over undifferentiated mass testing. Though the power of this approach can 
be further explored, our results suggest that cell phone-based contact tracing might also serve 
for pre-emptive sentinel monitoring during lockdowns or an effective control measure 
accompanying reopening (Supplementary Fig. 9). 
 
Discussion 
By creating a real-world data-derived environment, GERDA simulates the SARS-CoV-2 
infection spread and the corresponding COVID-19 societal burden by explicitly integrate 
interactions between human individuals, individual infection events, and human 
demographic characteristics (household composition, occupation, daily movement patterns, 
age and disease state) and physical proximity networks. This approach renders it possible to 
create a model, based on realistic assumptions and microscopic insights into the mechanics 
of infection spread. It enables GERDA to model realistic chains of infection and targets for 
intervention measures in georeferenced environments. 
 
Classical SIR-models [e.g.,1,2] are based on population-wide assertion, thereby omitting the 
variability of the infection transmission between individuals, neglecting individual behavior 
and geospatial data and being not suitable for real-time simulation. Traditional agent-based 
models [e.g., 3] capture stochasticity in agent behavior, but are highly limited in size by 
computational complexity nor cover specific geolocations. Others have attempted to 
overcome these limitations: Already back in 2005, Ferguson et al. [18] published an agent-
based model considering statistical distributions of transmission events in households, 
building types and alike. More recently, Gomez et al. [20] simulated infection transmission 
throughout Bogotá representing the city’s population by 1000 agents while Lai et al. [19] 
created a simple model to analyze the effect of traveling between cities in China, but without 
realistic individual agents. Still, they all attempt to describe the infection process on 
population level, thus relying on a coarse-grained representation by a limited number of 
agents. Alternatively, Kissler et al. [6] developed an ODE model that describes increased social 
distancing by decreasing the R value. Ferretti et al. [16] modeled pre-symptomatic and non-
diagnosed transmissions whereas Zhang et al. [17] provided valuable age specific data on 
contact patterns in the Chinese population. Karin et al. [21] assessed the effect of alternative 
working schedules. Certainly, all of those models can provide useful information for decision 
processes during a pandemic, however, they all focus on population dynamics and can neither 
consider geospatial referenced motion of agents in their communities into account, nor 
individually varying behavior, nor analyze infection spreading and disease progression on an 
individual scale. 
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In contrast, our approach aims for precision: it explicitly considers individual characteristics, 
the physical structure of a society described by geolocations and inhabitant patterns in the 
created environment. Simulations create a dynamic interaction network that due to complete 
time course tracking allows to compare contact patterns for the baseline and intervention 
scenarios. This “microscopic” approach is computationally more expensive but has several 
advantages compared to other epidemiological models: (i) it is able to perform comparative 
analysis for different intervention scenarios based on their relative effectiveness. (ii) it can 
deploy interaction networks between human individuals to evaluate and benchmark different 
testing and tracing strategies. (iii) the effective reproduction number R is an emergent 
property of our model, not an a priori fixed parameter, thus providing a direct measure for 
the efficacy of intervention strategies. (iv) it can accurately model localized and smaller 
outbreaks as a basis for analysis of the dynamics and optimal strategies not accessible by 
statistical models. 
 
We demonstrated these capabilities by deploying GERDA on two small-towns (Gangelt and 
Epping) and larger-town (Heinsberg), neighboring communities, as well as a Swedish 
community (Vaxholm near Stockholm), simulating selected intervention and reopening 
scenarios and comparing to a (worst case) baseline scenario of no interventions. For example, 
simulations for Gangelt with a lockdown 8 days after the suspected initial transmission event 
and with 10 % non-compliance match the levels of infections and deaths reported for Gangelt 
with a high degree of accuracy (Supplementary Fig. 10). 
 
Importantly, the predicted outcome for reopening scenarios reflects the stochasticity of 
infection events i.e. in the majority but not in all cases a subsequent outbreak takes place (Fig. 
3). This bimodality demonstrates that effective interventions require strict execution 
(stringency) and careful temporal control (timing). This is also supported by the observation 
that closing just a few locations while confronted with a high proportion of non-compliant 
individuals, in many scenarios does not qualitatively change the simulation output compared 
to the baseline scenario. The bimodality, however, also implies that early exit from lockdown 
does not necessarily lead to a second outbreak, which we observe across different simulated 
German, British, and Swedish communities (Supplementary Fig. 12). 
 
A general limiting factor in disease modelling, which also holds true for GERDA, is that the 
transition probabilities for the propagation of e.g. COVID-19 are intrinsically incomplete and 
evolving (Supplementary Table 1, [4]). Another caveat in our study is the setting of four 
relatively smaller european communities with a limited number of schools, work- and public 
places. Currently, GERDA does not include potential COVID-19 “hot spots” such as 
kindergartens, public transport networks, universities or nursery/senior homes, the latter of 
which can contribute up to 50% of mortalities. They will be incorporated in future versions. 
Given different dynamics might be observed when simulating densely populated or 
connected areas of megacities, metropoles and suburbs, future studies of larger and more 
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“complex” communities with more inhabitants, location types, and travel activities are 
warranted. Therefore, the long-term goal is to extend GERDA to cover diverse and 
metropolitan areas, encompassing entire countries, regions and the globe in a community 
effort.  
Important for public health recommendations based on cell-phone tracking is that, whilst the 
network created by GERDA can elucidate the effect of contact tracing and testing strategies, 
its predictive capacity could be improved by including feedback mechanisms from tracing of 
diagnosed individuals to the modeled diagnosis process.  
 
Remarkably, simulating these relatively small communities GERDA is the first model to offer 
insight into the bimodal behavior of SARS-CoV-2 infection dynamics and to facilitate 
comparative analysis of intervention strategies in a specific community. With unprecedented 
level of detail, GERDA provides novel insight into the different interaction networks 
facilitating the underlying infection propagation in a human population. Furthermore, this 
makes it possible to analyze infection chains as precisely as in reality possible only with virus 
genome sequencing in addition to testing the entire population, but also to benchmark the 
effectiveness of tracing and testing strategies. 
 
The COVID-19 pandemic is hurting the wellbeing of children across many communities and as 
a consequence there are ongoing debates on reopening of schools in many countries. 
Unfortunately, our results show that this in many (though not all scenarios) can trigger a major 
subsequent infection wave. We propose that a direct evaluation of these consequences must 
be conducted, given children must be protected independent of the impact on adults.  
 
Despite our work being motivated by the 2020 corona disaster, the concepts and planned 
extensions will be valuable when responding to e.g. the common flu or other pathogens. 
Furthermore, in the future it could be groundbreaking to extend the model to global 
communities and include modeling of therapeutic and vaccine interventions in order to direct 
public health policies and better safeguard the public preferably in real-time. 
 
Methods 
The ABM simulation framework was designed in an object-oriented manner, using the 
programming language Python version 3 [7] and the packages NumPy [8], pandas [9], 
GeoPandas [10], OSMnx [11]. The packages Matplotlib [12], seaborn [13] and the software 
gephi [14] were used for visualization. Despite being streamlined for the parallel execution of 
numerous replicates; the developed tool was designed for usage on customary computers. 
 
Design of the GERDA Model 
The model is agent-based and georeferenced, thus it comprises a world and agents. Each 
agent represents an individual, occupying a specific location at each time-step. 
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Characterization of the world: The modelled world represents the chosen area, based on the 
available geo-data. It is defined by the coordinates and types of various locations or buildings, 
where the distances between locations affect the agents’ movement-patterns. The current 
version distinguishes between the location-types residential/home, work, school, hospital 
and public/leisure.    
 
Characterization of the agents: Agents have three main features: age, (infection) status, and 
schedule. Age and status can be permuted without limits, however the choice of schedules is 
restricted by age and status.  
The age of an agent lies between 0 years and 99 years. It is randomly drawn from a 
distribution based on household compositions, resembling, e.g., German demography, 
according to census (Supplementary Fig. 14). Agents are characterized according to their 
health status as susceptible (S), infected (I), recovered (R) or deceased (D). Agents among the 
group of infected individuals (I) obtain sub-states specifying their condition as (only) infected 
(I), diagnosed (Id), hospitalized (Id

H), or being in an ICU (Id
ICU). Each agent has a schedule 

containing the locations visited by the agent with resolution of an hour, including 
discrimination of weekdays and weekends, while every day can be different. Distinct types of 
schedules pertain to the groups of children/students, adults/employees, adults/pensioners. 
Schedules change depending on (i) the status of the agent or (ii) general (policy-derived) 
measures. Changes in states and sub-states trigger the assignment of specific schedules. 
Further and different schedules can readily be implemented.  
 
World initialization: Information about the world is georeferenced using geographical data 
retrieved from OpenStreetMap including building types and distances. Each building is 
considered a location as long as its floor area is large enough and it is not a non-residential 
building, e.g., a windmill. The building types are assigned according to labels in the input data. 
For example, buildings marked as ‘office’ or ‘industrial’ are assigned as workplaces while 
buildings marked as ‘public’ or ‘church’ are assigned as public places. All buildings that are not 
labeled specifically are assigned as residential buildings or homes. If the input data did not 
contain a location for a hospital or morgue, these locations are added artificially at the margin 
of the world, during the initialization process. The sets of building types and location 
assignments can be adapted to the requirements of a specific community. An initialized world 
can be stored and, thus, used for comparative simulation of different scenarios.  
 
Initializing the agent population: Each residential building is home to one household that 
was randomly drawn from a distribution based on German census data. According to the 
respective household type and considering the reported demography, agents with adequate 
ages are randomly generated. Each agent is assigned a specific weekly schedule, that 
comprises times spent at home, work or school, public places etc., which are based on 
predefined flexible schedules for different age groups and types of individuals. These differ 
from individual to individual and for different days of the week. During the initialization, the 
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status of a predefined number of agents, chosen from a minimal number of households, is set 
to infected (I). All other agents are defined as susceptible (S). 
 
This spatio-temporal network, defined by periodically recurring movement patterns, 
constitutes the environment in which agents interact and, as an inevitable consequence, 
spread the infection. Agents operate in defined sub-networks, specified by regularly visited 
locations.  

Spatio-temporal simulation and modeling the spreading of SARS-Cov-2 infection: During 
each time-step of the simulation (one hour), the agents visit the locations within the 
georeferenced network specified by their respective schedules. Each agent is considered to 
encounter interactions with other agents at these locations. The interaction partner is 
randomly picked among all other agents present at the same location at the same time. Given 
a susceptible agent (S) which has been assigned to an infected agent (I) or vice versa as 
interaction partner, the infection transmission is a situation-dependent property occurring 
with a specific probability, 𝑃"#$()*"+#, upon which the uninfected agent’s state transits from 
susceptible to infected (I). This infection probability reads 

𝑃"#$()*"+# = 𝑃"#$()*"+#(𝑡) = 𝑘/ ⋅ 𝐼/(𝑡) ⋅ 𝑆3 

where 𝐼/(𝑡) is the infectivity of an infected agent (I) depending on the duration of its infection 
and 𝑆3is the age-dependent susceptibility of a susceptible agent (S). 𝑘/ is the infection rate, 
which represents individual protective measures of both parties (e.g. wearing face-masks) or 
location-specific factors such as the more strict hygiene regime in medical facilities.  

State transitions of infected agents: Infected agents have a probability to change their status 
to either (R) or (D) or change their sub-status to (Id), (Id

H) or (Id
ICU).  These probabilities are 

derived from published rates for those processes. The transition probabilities used to simulate 
the model are calculated for all transitions as probability per hour, where their dependence 
on age and on the duration of ongoing (sub-)states is taken into account. 

Tracing of agent data from simulation: All locations and (sub-)states of individual agents are 
recorded and their time-course over the entire simulation is stored to be used as input for 
subsequent simulations and for analyses and plotting. Furthermore, information on the 
infection network (when, where and by whom every modelled agent was infected) can be 
extracted from a completed simulation. To test the effect of different interventions, 
parameter values, or the application and relaxation of social distancing, repeated simulations 
(with the different measures imposed) can be performed with identical initializations or 
starting from a selected time point of previous simulations to compare alternative trajectories 
of disease-spread. 
 
Model Analysis 
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The (instantaneous) effective reproduction number Reff is defined as the average number of 
secondary infections caused by a single infected individual at a given time. The GERDA model 
calculates Reff at time t as follows: for time t a backward-looking sliding time window is applied 
(window width used was 4 days) and all individuals that were infectious at some point within 
this window are identified. The ultimate number of secondary infections caused by these 
individuals was then averaged (including zeros for individuals not causing any secondary 
infections), yielding Reff(t). 
 
Data Sources 
Johns Hopkins Coronavirus Resource Center: 
https://coronavirus.jhu.edu/map.html 
 
Our World in Data: 
https://ourworldindata.org/coronavirus#all-charts-preview 
 
Robert Koch Institute [RKI] 
https://www.rki.de 

1. Current Stage/Situation report of the Robert Koch Institute (RKI) about COVID-19: 
1.1. COVID-19 fatalities reported to RKI sorted according to age and gender  
1.2. Reported COVID-19 cases per 100.000 inhabitants in Germany sorted 

according to age groups and gender  
1.3. Case numbers 
1.4. Intensive care numbers / see Divi Intensive Register 
 

2. SARS-CoV-2 Characteristics for Coronavirus-Disease-2019 (COVID-19) (in German) 
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html 

Data from the characteristics refer to different studies  
 

3. Modelling of exemplary scenarios of the  SARS-CoV-2-epidemics 2020 in Germany 
https://edoc.rki.de/handle/176904/6547.2 

 
Divi-Intensive register [DIVI] 
https://www.divi.de 

1. Daily reports of the DIVI Intensive register 
2. Case numbers of reported intensive care patients (to estimate transition probabilities) 

 
Federal Office of Statistics 

Census, Distribution of household types, size and corresponding age distributions 
1. https://ergebnisse.zensus2011.de/ 
2. https://service.destatis.de/ 
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OpenStreetMap 
Geospatial data for initialization of locations openstreetmap 
https://www.openstreetmap.de/ 
 
 
Code Availability 
The code will be available shortly at  
https://tbp-klipp.science/GERDA/code/ 
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Figures 
Fig. 1: Overview of the geospatial, individualized demographic and georeferenced model (GERDA). a, The 
model encompasses a real-world community (bottom), exemplified by a small-town municipality (Gangelt, 
Germany). The world is created from coordinates and building type information. The human individuals 
(represented by computational agents) each have individual properties such as age, infection state, and 
occupation drawn from census-based demography. Each individual inhabits a location at any point in time, 
travels between locations based on specific weekly schedules and can encounter other individuals (e), thus 
creating an interaction network through which the infection can spread. The individual’s health status changes 
via location-dependent contacts with infected individuals and data-based transition probabilities, allowing state 
transitions between susceptible (S), infected (I), recovered (R), deceased (D) and infection sub-states diagnosed 
(Id), hospitalized (Id

H), in intensive care (Id
ICU). b, Average number of daily unique contacts (left) and average 

number of infections per day (right), between members of different age groups in the baseline scenario over a 
period of 5 working days. c, Representative infection chain network, originating from one infectee. d, Snapshot 
(from Movie 1) of infection dynamics at a specific time point, showing the number of infected individuals (circle 
size) at different locations in the community. f, Hourly occupation of the school, based on the schedules, over 
the course of two weeks, lambed by the specific statii (S: blue, I: red, R:blue ). Note the change in status on the 
second Monday (168h) indicating infection in school. g, Number of locations of different types in the modeled 
town. 
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Fig. 2: The baseline scenario. a, Trajectories of different status groups (S), (I), (R), and (D) resulting from 100 
simulations. b, Trajectories of the corresponding infection sub-states (Id), (Id

H) or (Id
ICU). c, Total infection events 

per instance for different location types over the full simulation period of 2000h (approximately 83 days). c, 
Hourly resolved occupation of location types by different status groups. Weekday/weekend and night-/day shift 
specific rhythms are apparent from e.g. the hospital panel. e, Distribution of status dwelling times before 
transiting to a specific (sub-) status for 100 simulations. Parameter value: Infectivity 𝑘"#$ = 0.3. 
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Fig. 3: Effect of non-pharmaceutical intervention scenarios, and individual behavior on the time course of 
infection. a, Baseline scenario with infectivity 𝑘"#$ = 0.3.  b, Scenario with full lockdown at time 200 h (about 
16 days, indicated by downward arrow). Work, school and public are closed and individuals have to stay at home 
instead. c, Reopening of all locations at time 500h (about 20 days, indicated by grey upward arrow) after 
lockdown as in b.  d, Selective reopening of only schools at 450h after lockdown as in b. e, Reduction of infectivity 
mimicking wearing face masks or keeping physical distance. f, Lockdown as in b, but 25% of individuals can or 
will not comply. g, Lockdown and reopening all at 750h, with entry from outside of the community of 5 new 
infected individuals at time 1000h (about 40 days, red arrow). h, Lockdown and reopening of schools as in d with 
5 newly entered infected individuals at 1000h. i-l, Distribution of the total number of infections in 100 
simulations for different parameter values of the model: i, Variation of infectivity, j, Variation of the lockdown 
time as in b, k, Variation of the non-compliance frequency as in f, l, Variation of the reopening time of all 
locations as in c. 
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Fig. 4: Infection network based tracing. a, Network of infections starting from 10 infected individuals leading to 
an unconnected network (baseline scenario; snapshot after 200h to retain visibility). b, Temporal network of 
possible infection transmissions starting from one individual (source, red arrow) unfolding within 15h after the 
source creates the first subsequent infection. Red edges: interactions leading to new infections, orange edges: 
interactions with non-realized potential for infection, grey edges: all other interactions without potential for 
infection. Red dots: infected individuals (from this or other sources), grey dots: non-infected individuals, grey-
scale indicates distance to infection source (number of contacts in-between). c, Reff values for the baseline 
scenarios and different scenarios of non-pharmaceutical interventions. d, Evaluation of the efficacy of location- 
and contact based infection tracing. The first diagnosed individual appears at day 6 and the number of 
individuals, identified by back-tracing over the previous 10 days, are indicated for contact-based (black dots) and 
for location-based (grey dots) tracing. Red dots indicate the number of infections by the diagnosed individual, 
during the last ten days, which would be diagnosed when tested. An indication of the total number of 
(cumulative) infections is given by the solid red line and the total infections per day are represented by the 
dashed red line. For orientation, the population size is indicated by the dotted grey line. Note that in real world 
tracing-based testing would alter the infection, diagnosis and ultimately subsequent tracing dynamics. The 
simulation only represents the case, when tracing based testing would not have been utilized before and, thus, 
represents the information at the onset of tracing-based testing.  

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2020. .https://doi.org/10.1101/2020.05.03.20089235doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.03.20089235
http://creativecommons.org/licenses/by-nc/4.0/


19 

Supplementary Information 
 
The supplementary materials include: 
 
Supplementary Table 1:  Quantitative information used for state changes.  
Supplementary Fig. 1:  Age-dependent trajectories for S, I, R, and D. 
Supplementary Fig. 2:  Results for Heinsberg. 
Supplementary Fig. 3:  Variation of infectivity kI. 
Supplementary Fig. 4: Timing of lockdown. 
Supplementary Fig. 5: Variation of reopen times of schools after closure of all locations at 200h. 
Supplementary Fig. 6: Variation of reopen times of all locations after closure of all locations at 200h. 
Supplementary Fig. 7: Effect of non-compliance. 
Supplementary Fig. 8: Re-infections or import of new infections after the infection wave. 
Supplementary Fig. 9: Alternative scenario for comparison of tracing strategies. 
Supplementary Fig. 10: Comparison of model-predictions with reported cases for the municipality of Gangelt. 
Supplementary Fig. 11: Comparison of age group specific contact and infection frequencies for the 
municipality of Gangelt in baseline and lockdown scenarios. 
Supplementary Fig. 12: Comparison of bimodal behavior for four different geo-locations with different 
population sizes. 
Supplementary Fig. 13: Stringency of non-pharmaceutical interventions. 
Supplementary Fig. 14: Age distribution. 
Supplementary Fig. 15: Effect of lockdown time on number of deceased people. 
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Supplementary Table 1: Quantitative information used for state changes.  Our model utilizes transition 
probabilities for the propagation of SARS-CoV-2/COVID-19 [4]. For state changes in the left column we derived 
age-dependent probabilities per hour for the transition to occur from the following data: average time in a state 
until transition (given in days) and percentage of affected people undergoing transition. This information is 
intrinsically incomplete and ever evolving. For example, diagnostic capacity in Germany is currently increasing, 
hence, the respective parameters should be calibrated during the pandemic or for new geolocations. The 
infection probability by itself is hard to determine as statistics for SARS-CoV-2 infection events are incomplete. 
Thus, these values are educated guesses challenged with sensitivity analysis (Supplementary Fig. 3-7). 
 

State Change Average Time 
to transition [d] 

Percentage of individuals 
affected 

Source 

Infected → 
Recovered 

10 85 % RKI 

Infected → Hospital 5.5 15 % RKI 

Infected → Death 10 Age Dependent Death Rate RKI 

Hospital → 
Recovered 

14 78 % RKI 

Hospital → ICU 14 22 % DIVI Register 

Hospital → Death 10 Age Dependent Death Rate RKI 

ICU → Hospital 7 70 % DIVI Register 

ICU → Death 7 30 % DIVI Register 

Susceptible → 
Infected 

Probability distribution taken from [1] 

Infected → 
Diagnosed 

15 15 % RKI 
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Supplementary Fig. 1: Age-dependent trajectories for S, I, R, and D. The individual curves show results for a 
single simulation for infection rate 0.3. Age ranges are given on top of each panel. 
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Supplementary Fig. 2: Results for Heinsberg. We have also initialized the model with geographical demographic 
data for Heinsberg, Gangelt’s larger neighbor town with about 28.300 inhabitants. a, Time courses of agents’ 
state (S), (I), (R), and (D). b, Time courses of sub-states of infection. c, Dynamics at different location types. e, 
Age distribution. f, Distribution of status dwelling times before a specific status transition. g Status trajectories 
as in a for age groups. 
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Supplementary Fig. 3: Variation of infectivity 𝒌𝑰. The simulation is performed for different values of infectivity 
and no interventions imposed. 

 

 
 
 
 
Supplementary Fig. 4: Timing of lockdown. The effect of different starting times to realize the general measure 
of lockdown, i.e. closure of all facilities.  
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Supplementary Fig. 5: Variation of reopen times of schools after closure of all locations at 200h. Parameter 
value 𝑘"#$ = 0.3. 
 

 
 
 
Supplementary Fig. 6: Variation of reopen times of all locations after closure of all locations at 200h. Parameter 
value 𝑘"#$ = 0.3. 
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Supplementary Fig. 7: Effect of non-compliance. This scenario presents a full lockdown (closure of schools, work 
and public) at 200h. The percentage given in each panel indicates the percentage of individuals who are not 
following, either due to lack of willingness or since they have duties such as system-relevant work. 
 

 
 
 
Supplementary Fig. 8: Re-infections or import of new infections after the infection wave. All scenarios: close 
all at 200h, a, 5 re-infections at 1000h. b, Reopen all at 750h, 5 re-infections at 1000h, c,  Reopen all at 750h, re-
infections at 800h, 900h, 1000h, 1100h, 1200h, 1300h (1 each time). d, Reopen school at 750h, 5 re-infections 
at 1000h. All panels: arrow down close all, arrow up reopening, stars indicate the entry of new infectees from 
outside.  
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Supplementary Fig. 9: Alternative scenario for comparison of tracing strategies. a, Trajectories for a lockdown 
at 200h and full reopening at 400h. b, Time courses of infections that occurred and that could be location or 
contact traced. Shaded grey area indicates the period of the lockdown. It is apparent that during the lockdown, 
newly diagnosed cases still result in potentially infectious contacts to be traced. c, As in b, magnifying the 
relevant time window following the 20 days after the exit from lockdown. 
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Supplementary Fig. 10: Comparison of model-predictions with reported cases for the municipality of Gangelt. 
The number of diagnosed cases for the municipality of Gangelt (orange), predicted by the model (mean over 
100 replicate simulations with standard deviation indicated by shaded area) over the period from 15. February 
2020 (carnival event ‘Kappensitzung’) to the 8th May 2020. The dashed line indicated the reported (diagnosed) 
infections between the 24th of April and the 22nd of May 2020. The number of deaths (black), predicted by the 
model in the same period with the reported number of deceased individuals, indicated by the dashed line. 
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Supplementary Fig. 11: Comparison of age group specific contact and infection frequencies for the 
municipality of Gangelt in baseline and lockdown scenarios. a, Average number of daily unique contacts 
between members of different age groups in the baseline scenario over a period of 5 successive working days. 
b, Average number of daily unique contacts between members of different age groups during lockdown. c, 
Difference in contacts between baseline and lockdown scenarios, i.e. contacts prevented by the lockdown. d, 
Average number of infections per day, between members of different age groups in the baseline scenario over 
a period of 5 working days. e, Average number of infections per day between members of different age-groups 
during lockdown. f, Difference in infections between baseline and lockdown scenarios, i.e.  infections prevented 
by the lockdown.      
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Supplementary Fig. 12: Comparison of bimodal behavior for four different geo-locations with different 
population sizes. We simulated lockdown and reopen scenarios for the four different communities: Heinsberg 
(Germany), Gangelt (Germany), Epping (UK) and Vaxholm (Sweden) starting with 5 infected individuals. Here we 
find bimodal behavior for all four geo-locations depending on the lockdown duration. 
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Supplementary Fig. 13: Stringency of non-pharmaceutical interventions.  
Since complete lockdown is practically hard to achieve in real-world societies, we simulated various levels of 
non-compliance (Supplementary Fig. 7). Here, we compare the effect of the level of non-compliance to 
lockdown (at 200h) on the size of a second peak after reopening (at 700h). We see for these examples that non-
compliance of 10% leads to a smaller first peak with more remaining susceptibles and a higher second peak than 
non-compliance of 20% where both peaks in infected people are of roughly the same height. 
Depending on the capacity of health care systems, the height of the second peak can be critical for the ability to 
cope with the threat or breakdown. 
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Supplementary Fig. 14: Age distribution. Resulting age distribution for Gangelt.  

 
 
Supplementary Fig. 15: Effect of lockdown time on number of deceased people. Distribution of the  total 
number of deceased in 100 simulations  for different lockdown starting times. 
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