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KEY POINTS 30 

 31 

Question: What SARS-CoV-2 screening and isolation program will keep U.S. residential 32 

college students safe and permit the reopening of campuses? 33 

 34 

Findings: Frequent screening (every 2 or 3 days) of all students with a low-sensitivity, high-35 

specificity test will control outbreaks with manageable isolation dormitory utilization at a 36 

justifiable cost. 37 

 38 

Meaning: Campuses can safely reopen in the Fall 2020 but success hinges on frequent screening 39 

and uncompromising, continuous attention to basic prevention and behavioral interventions to 40 

reduce the baseline severity of transmission.   41 

  42 



ABSTRACT 43 

Importance: The COVID-19 pandemic poses an existential threat to many US 44 

residential colleges: either they open their doors to students in September or they risk 45 

serious financial consequences. 46 

 47 

Objective: To define SARS-CoV-2 screening performance standards that would permit 48 

the safe return of students to campus for the Fall 2020 semester. 49 

 50 

Design: Decision and cost-effectiveness analysis linked to a compartmental epidemic  51 

model to evaluate campus screening using tests of varying frequency (daily-weekly), 52 

sensitivity (70%-99%), specificity (98%-99.7%), and cost ($10-$50/test). Reproductive 53 

numbers Rt = {1.5, 2.5, 3.5} defined three epidemic scenarios, with additional infections 54 

imported via exogenous shocks. We generally adhered to US government guidance for 55 

parameterization data.  56 

 57 

Participants: A hypothetical cohort of 5000 college-age, uninfected students.  58 

 59 



Main Outcome(s) and Measure(s): Cumulative tests, infections, and costs; daily 60 

isolation dormitory census; incremental cost-effectiveness; and budget impact. All 61 

measured over an 80-day, abbreviated semester. 62 

 63 

Results: With Rt = 2.5, daily screening with a 70% sensitive, 98% specific test produces 64 

85 cumulative student infections and isolation dormitory daily census averaging 108 65 

(88% false positives). Screening every 2 (7) days nets 135 (3662) cumulative infections 66 

and daily isolation census 66 (252) with 73% (4%) false positives. Across all scenarios, 67 

test frequency exerts more influence on outcomes than test sensitivity. Cost-effectiveness 68 

analysis selects screening every {2, 1, 7} days with a 70% sensitive test as the preferred 69 

strategy for Rt = {2.5, 3.5, 1.5}, implying a screening cost of {$470, $920, $120} per 70 

student per semester. 71 

 72 

Conclusions & Relevance: Rapid, inexpensive and frequently conducted screening – 73 

even if only 70% sensitive – would be cost-effective and produce a modest number of 74 

COVID-19 infections. While the optimal screening frequency hinges on the success of 75 

behavioral interventions to reduce the base severity of transmission (Rt), this could permit 76 

the safe return of student to campus.   77 



INTRODUCTION 78 

Universities across the United States are struggling with the question of whether and how 79 

to reopen for the Fall 2020 semester.1,2 Residential colleges – with their communal living 80 

arrangements, shared dining spaces, intimate classrooms, and a population of young 81 

adults anxious to socialize – pose a particular challenge. In the absence of an effective 82 

vaccine, a proven therapy, and/or sufficient herd immunity, the best hope for re-opening 83 

campuses in the fall is likely to be a robust strategy of behavior-based prevention 84 

combined with regular monitoring to rapidly detect, isolate, and contain new SARS-CoV-85 

2 infections, when they occur.3 86 

Evidence on the available monitoring technologies and their performance is limited and 87 

rapidly evolving. The FDA is currently evaluating over 100 candidate tests for the 88 

presence of SARS-CoV-2 infection or antibodies.4,5 The uncertainties span a broad range, 89 

including the logistics of deployment, the ease and comfort of sample collection, and the 90 

accuracy, scalability, turn-around-time and cost of test kits. After a new COVID-19 case 91 

is detected, further questions emerge regarding how to conduct subsequent tracing, how 92 

to isolate detected cases in the context of congregate housing arrangements, and how to 93 

protect other at-risk populations, including faculty, staff, and members of the surrounding 94 

community.6 These uncertainties underscore the pressing need for both a generalized 95 

assessment of population-wide screening for SARS-CoV-2 and a comprehensive plan for 96 

university reopening. 97 

For many U.S. colleges, COVID-19 poses an existential threat: either they open their 98 

doors to students in September or they suffer severe financial consequences.7 University 99 



administrators struggling with this dilemma must nevertheless keep in mind that their 100 

first priority is the safety of the students in their care. In this paper, we offer specific 101 

recommendations on the design of a virologic monitoring program that will keep students 102 

safe at an affordable cost. Our specific research objectives are: first, to define the 103 

minimum performance attributes of a SARS-CoV-2 monitoring program (e.g., its 104 

frequency, sensitivity, specificity, and cost) that could ensure that college students are 105 

kept safe; second, to understand how those minimum performance standards might 106 

change under varying assumptions about the severity of the epidemic and the success of 107 

behavioral and social distancing interventions; third, to suggest what isolation and 108 

treatment capacity would need to be in place; and finally, to forecast what all this might 109 

cost and to help decision makers make sense of that information to address the question 110 

of a screening and monitoring program’s “value.” 111 

 112 

METHODS 113 

Study Design 114 

We adapted a simple compartmental epidemic model to capture the essential features of 115 

the situation facing university decision makers: the epidemiology of SARS-CoV-2; the 116 

natural history of COVID-19 illness; and regular mass screening to detect, isolate, and 117 

contain the presence of SARS-CoV-2 in a residential college setting (Figure S1). A 118 

spreadsheet implementation of the model permitted us to vary critical epidemic 119 

parameters and to examine how different test performance attributes (frequency, 120 



sensitivity, specificity, cost) would translate into outcomes. Model input data (Table 1) 121 

were obtained from a variety of published sources, adhering whenever possible to data 122 

guidance for modelers recently issued by the Centers for Disease Control and Prevention 123 

(CDC) and the Office of the Assistant Secretary for Preparedness and Response 124 

(ASPR).8-18 We defined three increasingly pessimistic epidemic scenarios and estimated 125 

both cumulative outcomes (e.g., tests administered; true/false positives; new infections; 126 

and person-days requiring isolation) and economic performance (e.g., costs, incremental 127 

cost-effectiveness, and budget impact) over an abbreviated 80-day semester, running 128 

from Labor Day through Thanksgiving.2 We assumed a medium-sized college setting 129 

with a target population of 5000 students, all of them <30 years old and non-immune, 130 

living in a congregate setting.18,19 We “seeded” this population with 10 undetected, 131 

asymptomatic cases of SARS-CoV-2 infection.  132 

 133 

Compartmental Model 134 

To the basic “susceptible-infected-removed” (or “SIR”) compartmental modeling 135 

framework, we added the following: the availability of regular, repeated screening with a 136 

test of imperfect sensitivity and specificity; creation of a new compartment for uninfected 137 

persons receiving a false positive test result; separation of the infected compartment to 138 

distinguish between undetected asymptomatics, detected asymptomatics (“true 139 

positives”), and observed symptomatics; and the importation of additional new infections 140 

via exogenous shocks (e.g., infections transmitted to students by university employees or 141 

members of the surrounding community; “super-spreader” events such as parties). 142 



We defined three epidemic severity scenarios: a “base case” with Rt = 2.5, a test 143 

specificity of 98%, and the exogenous introduction of five new, undetected infections 144 

into the susceptible population each week; a “worst case” with Rt = 3.5, a test specificity 145 

of 98%, and 25 exogenous new infections every two weeks; and a “best case” with Rt = 146 

1.5, test specificity 99.7%, and no exogenous shocks. 147 

 148 

Isolation 149 

We assumed that after a lag of 8 hours, individuals receiving a positive test result (true or 150 

false) and those exhibiting symptoms of COVID-19 were moved from the general 151 

population to an “isolation dormitory” where their infection was confirmed, where they 152 

were treated with supportive care, and from which no further transmissions were 153 

possible. The lag reflected both test turnaround delays and the time required to locate and 154 

isolate identified cases. Confirmed (true positive) cases remained in the isolation 155 

dormitory an average of 14 days, to ensure they were not infectious before proceeding to 156 

a recovered/immune state.9,10 Students with false positive results remained isolated for 24 157 

hours, reflecting our assumption that a highly-specific confirmatory test could overturn 158 

the original diagnosis, permitting them to return to the campus population. 159 

We assumed a symptomatic case fatality risk of 0.05% and a 30% probability that 160 

infection would eventually lead to observable COVID-19-defining symptoms in this 161 

young cohort.8,11-13 162 

 163 



Screening 164 

We sought to evaluate both existing SARS-CoV-2 detection methods and newer 165 

technologies that could plausibly be available in the near future. Accordingly, we 166 

considered a range of different test sensitivities (70-99%), specificities (98-99.7%),16,17 167 

and per test costs ($10-$50). For each combination of these test characteristics, we 168 

considered screening frequencies every 1, 2, 3, and 7 days. We assumed that a 169 

confirmatory test with 100% specificity could distinguish false positive from true positive 170 

results at a cost of $100. 171 

 172 

Cost-effectiveness 173 

Next, we estimated incremental cost-effectiveness ratios, denominated in screening costs 174 

per infection averted. This measure of return on investment in screening was compared to 175 

a benchmark of value estimated by multiplying the following four terms: 1) COVID-176 

related mortality of 0.05% in persons of college age;8 2) survival loss of 60 years per 177 

college-age fatality’20 3) societal willingness-to-pay (WTP) $100,000 per year of life 178 

gained;21 and 4) (1 + Rt), to account for the fact that each infection averted prevents an 179 

average of Rt secondary infections.8,14,15 This method yielded a maximum WTP to avert 180 

one infection ranging from $7,500 (best case) to $10,500 (base case) to $13,500 (worst 181 

case).  182 

Cost-effectiveness analysis identified a preferred screening strategy from among 12 183 

possibilities – three test sensitivities (70%, 80%, and 90%) and four frequencies (1, 2, 3, 184 



and 7 times per week) – under each of the epidemic scenarios (base, worst, and best case) 185 

described above. To help decision makers understand the fiscal consequences of pursuing 186 

these preferred strategies, we also conducted a budget impact assessment, reporting the 187 

cumulative costs for the semester on a per-student basis. 188 

 189 

RESULTS 190 

Impact of Test Frequency and Sensitivity 191 

Over an 80-day semester, in the base case, daily screening with a 70% sensitive, 98% 192 

specific test will result in 85 cumulative infections. This estimate jumps to 135/234/3,662 193 

when tests are performed every 2/3/7 days. Raising the sensitivity of the test from 70% to 194 

90% will reduce total infections (e.g., from 85 to 77 for daily screening and from 3,662 to 195 

1,612 for weekly screening). But across all three epidemic severity scenarios, frequency 196 

of testing has an even more powerful impact on cumulative infections than the sensitivity 197 

of the test employed (Figure 1). 198 

  199 

Isolation Dormitory Occupancy  200 

In the base case (Rt = 2.5 and 5 exogenous infections each week), daily screening with a 201 

70% sensitive, 98% specific test results in an average isolation dormitory census of 108 202 

occupants, of whom 12% are truly infected (Figure 2a). With the frequency of screening 203 

reduced to once every 2 (3) days, overall census falls to 66 (59), as fewer tests are 204 



performed and fewer false positives are obtained; however, less frequent testing also 205 

results in greater transmission of infection and the average proportion of truly infected 206 

persons in isolation rises to 27% (46%) (Figure 2b/2c). Further reducing the frequency of 207 

screening to weekly causes the infected occupancy of the isolation dormitory to grow 208 

explosively (Figure 2d).  209 

False positives – and the isolation capacity required to accommodate them – are greatly 210 

reduced using a more specific test. With daily screening in the base case, for example, 211 

increasing the test specificity from 98% to 99.7% causes the average daily census of false 212 

positives in isolation to fall from 96 to 15.  213 

Under worst case assumptions (Rt = 3.5 and 25 exogenous infections every two weeks) 214 

average census grows from 127 (26% truly infected) with daily screening to 308 (92% 215 

truly infected) with screening every 3 days (Figure S2). With weekly screening, virtually 216 

the entire student population will have been infected before the 80-day semester is 217 

concluded. 218 

In the best case (Rt = 1.5, no exogenous shocks, and a 99.7% specific test), average 219 

occupancy of the isolation dormitory is light (5 infected, 2 false positives) and can be 220 

controlled with no more than weekly screening (Figure S3).  221 

 222 

  223 



Cost-effectiveness and budget impact 224 

In the base case, screening with a less expensive, less sensitive test dominates (i.e., costs 225 

less and averts greater numbers of infection) screening with more expensive, more 226 

accurate tests for all plausible WTP values. At the benchmark maximum WTP 227 

($10,500/infection averted in the base case), screening every 2 days with a 70% sensitive 228 

test is the preferred strategy. If WTP exceeds $46,400 per infection averted, daily 229 

screening with this same test is preferred (Table 2). Under worst-case assumptions, daily 230 

screening strategies are the only undominated choices for all WTP values exceeding 231 

$6,600/infection averted; at the benchmark maximum WTP ($13,500/infection averted in 232 

the worst case), daily screening with the least sensitive (70%) test is the preferred choice. 233 

Under best-case assumptions (WTP maximum $7,500 per infection averted), weekly 234 

screening with a 70% sensitive test is preferred. 235 

Over the 80-day semester, the per-student costs of implementing the preferred screening 236 

strategy will be $120, $470, and $920 in the best, base, and worst case scenarios, 237 

respectively (Table 3). 238 

 239 

DISCUSSION  240 

 241 

The safe return of students to residential colleges demands an effective SARS-CoV-2 monitoring 242 

strategy. We find that a highly specific screening test that can easily be administered to each 243 

student every one to seven days – and that reports results quickly enough to permit newly 244 



detected cases to be isolated within hours – will be sufficient to blunt the further transmission of 245 

infection and control outbreaks at a justifiable cost. 246 

 247 

Of the many uncertain variables driving our assessment of the required frequency of screening, 248 

we highlight the effective reproductive number, Rt. This uncertain measure of the transmission 249 

potential of infection will depend in part on factors that are within the control of students and 250 

university administrators. Strict adherence to hand-washing, mask-wearing, public space 251 

occupancy limits, and other best practices could drive Rt down to best-case levels, rendering 252 

containment controllable with testing as infrequent as weekly. However, any relaxation of these 253 

measures in the residential college setting could easily drive Rt to worst-case levels, requiring 254 

screening as frequent as daily. All members of the university community must understand the 255 

fragility of the situation and the ease with which inattention to behavior may propagate infections 256 

and precipitate the need once again to shut down campus. 257 

 258 

Much depends on the judicious management of positive test results, both true and false. Rapid 259 

detection, confirmation, isolation, and treatment of true positives is, of course, essential. We find 260 

that frequent screening with a test of modest sensitivity and a turnaround time to results of 8 261 

hours will be sufficient for this purpose. The greater difficulty lies in managing the 262 

overwhelming number of false positives that will inevitably result from repeated screening for 263 

low-prevalence conditions. False positive results threaten to overwhelm isolation housing 264 

capacity, a danger whose gravity increases with screening frequency. The specificity of the 265 

initial screen will matter far more than its sensitivity. 266 



 267 

Even with a 98% specific screening test, false positives will present a challenge. Until a 268 

confirmatory test result is obtained, anyone receiving a positive test result will be presumed to be 269 

infectious and needing to be separated from other students. Setting aside the logistical challenges 270 

and financial costs, administrators must anticipate the anxiety such separations may provoke 271 

among both students and their families. Excessive numbers of false positives may fuel panic and 272 

undermine confidence in the reliability of the monitoring program. It may be possible to work 273 

with test manufacturers to tune test kits for use in this setting, sacrificing some small measure of 274 

sensitivity in favor of higher specificity. 275 

 276 

Obtaining an adequate supply of testing equipment will be a challenge. On a college campus of 277 

5,000 enrollees, screening of the students alone every two days will require roughly 195,000 test 278 

kits over the abbreviated semester. Our analysis assumed per test costs (including the test 279 

equipment and associated personnel costs) ranging from $10-$50. Lower-cost, self-administered 280 

testing modalities may soon be available and could make screening more affordable. Pooling 281 

could also facilitate more efficient, higher volume screening.22 However, pooling introduces its 282 

own logistical challenges and could increase the time to definitively identify and isolate a 283 

positive case, resulting in further transmission and provoking anxiety among the many 284 

uninfected students notified that they are among the members of an initially positive pool.  285 

 286 

We have tried to help decision makers make sense of the “value” question by conducting a cost-287 

effectiveness analysis and by comparing our findings to a rough estimate of the societal 288 



willingness to pay per infection averted.23 While we have adhered to the broad outlines of 289 

recommended practice for the conduct of economic evaluation,23 we urge readers to interpret our 290 

results with caution. The majority of our assumptions are conservative – that is, they understate 291 

the value of more frequent testing. For example, we ignore the clinical harms and attributable 292 

costs of COVID-19-related morbidity and treatment. We also ignore the value of infections 293 

averted beyond the student population. However, a few assumptions (e.g., our failure to account 294 

for the economic and quality of life effects of false positives) may pull in the direction of less 295 

testing.  296 

 297 

The simple model underlying this analysis has notable limitations. We assumed homogenous 298 

mixing without age-dependent transmission. We did not explicitly include the impact of 299 

screening on faculty and staff, though we did allow for the importation of infections from 300 

exterior sources. We assumed that no students arrive on campus with immunity to COVID-19. 301 

Finally, we excluded the impact of symptom screening and contact tracing. Given that both are 302 

logistically challenging, this is a noteworthy omission; our results suggest that with frequent 303 

enough screening, neither symptom checking nor contact tracing would be necessary for 304 

epidemic control.  305 

 306 

Reopening college imposes risks that extend beyond students to the faculty who teach them, to 307 

the many university employees (administrative staff, dining hall workers, custodians) who come 308 

into close daily contact with them, and to the countless other members of the surrounding 309 

community with whom they come into contact. University presidents have a duty to consider the 310 



downstream impact of their reopening decisions on these constituencies. However, their first 311 

responsibility is to the safety of the students in their care. So, while we certainly do not intend to 312 

minimize the broader effects of the reopening decision, we have quite deliberately excluded from 313 

consideration any transmissions exported off campus.  314 

 315 

We believe there is a safe way for students to return to college in the Fall of 2020; the question is 316 

whether it is feasible today on a large scale. Coupled with strict behavioral interventions that 317 

keep Rt below 2.5, a rapid, inexpensive and even poorly sensitive (>70%) test, conducted at least 318 

every 2 days, would produce a modest number of containable infections and would be cost-319 

effective.    320 
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Table 1. Model input parameters and scenarios. 
 

Model inputs References 

Compartments Initial population size (n)  

Non-infected, susceptible 4,990 18 

Infected, asymptomatic 10 Assumption 

All other compartments 0 Assumption 

 

Time horizon (days) 80 2 

 

Disease dynamics 

Time to recovery (1/) 14 days 9,10 

Time to false positive 

return (1/) 

1 day Assumption 

Probability of symptoms 

given infection (%) 

30 11-13 

Symptomatic case fatality 

ratio (%) 

0.05 8 

Transmission rate () 

Dependent on Rt 

 

Rate of symptoms 

development () 

 

 

Scenarios Best Base Worst  

Effective reproductive 

number, Rt 

1.5 2.5 3.5 8,14,15 

Test specificity (true 

negative rate, %) 

99.7 98.0 98.0 16,17 

Exogenous shock events 

(number of infections/time 

interval) 

0 5/week 25/14 days Assumption 

 

Test characteristics I II III  

Sensitivity (true positive 

rate, %) 

70 80 90 Assumption 

Cost per test ($) 10 20 50 Assumption 

Time to test result return 

(hours) 

8 

 

Assumption 

Confirmatory test 

sensitivity (%) 

100 

 

Assumption 

Confirmatory test cost ($) 100 

 

Assumption 

 

 

 



Table 2: Results of the incremental cost-effectiveness analysis ($/COVID-19 infection averted) 

in the base (top), worst (middle) and best (bottom) case scenarios. Preferred strategies at the 

maximum willingness-to-pay (WTP) threshold are shaded gray.  

 

Frequency 

Test 

Sensitivity 

(%) 

Cost ($) 
Total 

Infections 

Incremental Cost-

effectiveness Ratio 

($/infection averted)* 

Base Case Scenario (Rt 2.5, 5 exogenous shock infections each week) 

Maximum willingness-to-pay = $10,500/infection averted 

Weekly 70 718,700 3,662 ( - ) 

Weekly 80 1,210,700 2,525 dominated 

Every 3 days 70 1,567,600 234 200 

Every 2 days 70 2,350,300 135 7,900 

Weekly 90 2,776,700 1,612 dominated 

Every 3 days 80 2,870,000 187 dominated 

Every 2 days 80 4,306,700 120 dominated 

Daily 70 4,664,300 85 46,400 

Every 3 days 90 6,781,400 160 dominated 

Daily 80 8,550,800 81 852,300 

Every 2 days 90 10,177,700 109 dominated 

Daily 90 20,211,100 77 3,480,900 

Worst Case Scenario (Rt 3.5, 25 exogenous shock infections every 2 weeks)  

Maximum willingness-to-pay = $13,500/infection averted 

Weekly 70 548,200 4,991 ( - ) 

Weekly 80 842,100 4,992 dominated 

Every 3 days 70 1,490,400 3,052 dominated 

Weekly 90 1,714,600 4,990 dominated 

Every 2 days 70 2,297,000 584 400 

Every 3 days 80 2,701,400 1,545 dominated 

Every 2 days 80 4,212,900 442 dominated 

Daily 70 4,613,200 233 6,600 

Every 3 days 90 6,443,300 929 dominated 

Daily 80 8,456,600 213 194,800 

Every 2 days 90 9,969,000 366 dominated 

Daily 90 19,990,000 199 845,900 

*Dominated strategies are those that cost more and result in more infections than some 

combination of other strategies. 



Table 2, continued: Results of the incremental cost-effectiveness analysis ($/COVID-19 

infection averted) in the base (top), worst (middle) and best (bottom) case scenarios. Preferred 

strategies at the maximum willingness-to-pay (WTP) threshold are shaded gray. 

 

Frequency 

Test 

Sensitivity 

(%) 

Cost ($) 
Total 

Infections 

Incremental Cost 

effectiveness Ratio 

($/infection averted)* 

Best Case Scenario (Rt 1.5, no exogenous shocks, 99.7% specific test)  

Maximum willingness-to-pay <$7,500/infection averted 

Do Nothing - 0 1,371 ( - ) 

Weekly 70 586,600 31 400 

Weekly 80 1,154,800 24 dominated 

Every 3 days 70 1,368,400 8 35,200 

Every 2 days 70 2,051,900 5 209,200 

Every 3 days 80 2,696,400 7 dominated 

Weekly 90 2,860,300 20 dominated 

Every 2 days 80 4,043,700 4 dominated 

Daily 70 4,098,500 2 742,600 

Every 3 days 90 6,680,500 6 dominated 

Daily 80 8,077,500 2 dominated 

Every 2 days 90 10,019,100 4 dominated 

Daily 90 20,014,700 2 dominated 

*Dominated strategies are those that cost more and result in more infections than the next least 

costly strategy. 

 

 



Table 3: Per student costs for optimal policies over an 80-day horizon under base, worst , and 
best case scenarios 

Scenario Optimal Policy Cost per Student ($) 

Base case (Rt = 2.5) Screening every 2 days, 70% sensitivity 470 

Worst case (Rt = 3.5) Daily screening, 70% sensitivity 920 

Best case (Rt = 1.5) Weekly screening, 70% sensitivity 120 

 
 



Figure 1. Cumulative infections as a function of test sensitivity and frequency. Over an 80-

day horizon, for the (a) base case (Rt 2.5), (b) worst case (Rt 3.5), and (c) best case (Rt 1.5), these 

figures report cumulative infections (vertical axis; logarithmic scale) for tests with sensitivity 

ranging from 70-99% (horizontal axis). The colored lines denote different screening test 

frequencies (blue: daily screens; orange: every 2 day screen; gray: every 3 day screen; yellow: 

weekly screen). 

  



Figure 1. Cumulative infections as a function of test sensitivity and frequency 
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Figure 2: Projecting the required size of the isolation dormitory. An isolation dormitory needs to be large enough to house 

students with false positive results (shaded gray), students with symptoms (shaded light blue), and students without symptoms who 

have received true positive results (shaded dark blue). Over the 80-day horizon (time on the horizontal axis), this figure depicts the 

number of students in the isolation dormitory (vertical axis, note the scales are different) by indication, using a 70% sensitive, 98% 

specific test, under the base case scenario (Rt = 2.5). The panels show results of screening at different frequencies: (a) daily screening; 

(b) screening every 2 days; (c) screening every 3 days; and (d) weekly screening. In Panels a through c, the effect of exogenous 

shocks (5 per week) is visible in the scalloped borders; this is less evident with weekly testing where the number of true positive cases 

masks the comparatively small impact of exogenous shocks. 

 

 

  



Figure 2: Expected daily occupancy of the isolation dormitory under base case assumptions.  
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Model description 

We developed a dynamic, compartmental model using a modified “susceptible-infected-
recovered” (or SIR) framework. The model portrays the epidemiology and natural history of 
infection in a homogeneous population of at-risk individuals as a sequence of transitions, 
governed by difference equations, between different health states (or “compartments”). The flow 
diagram (Figure S1, below) illustrates the modifications we made to the basic SIR framework: 

• Addition of regular, repeated screening with a test of imperfect sensitivity and specificity. 
• Removal of infected individuals from the transmitting population based on either 

screening test findings or the development of COVID-defining symptoms. 
• Removal (and return) of uninfected individuals from the transmitting population based on 

“false positive” screening test findings. 
• Importation of additional new infections from exogenous sources (e.g., infections 

transmitted to students by university employees or members of the surrounding 
community. 

  

Compartments. We defined a total of 7 model compartments, divided into three pools: 

• Active transmission and testing pool. Everyone is in this pool at time 0. All transmission 
of infection takes place between individuals in this pool. This is also the pool in which 
screening for infection takes place.   
 

o U: Uninfected, susceptible individuals 
o A: Infected, asymptomatic 

 
Note that, without testing, individuals in these two compartments are indistinguishable 
from one another. 
  

• Isolation pool. Individuals in this pool are assumed to be isolated from the active 
transmission pool and from one another. It is assumed that transmission is not possible 
within this pool. 
 

o S: Infected, symptomatic (true) positive test result 
o TP: Infected, asymptomatic, (true) positive test result 
o FP: Uninfected, false positive result 

 
• Removed pool. Individuals in this pool are assumed to play no role either in the 

transmission of infection or in testing activities.  
 

o R: Recovered 
o D: Dead 
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Parameters 

β: rate at which infected individuals contact susceptibles and infect them 
 
τ: rate at which individuals in the testing pool are screened for infection 
 
δ: rate at which individuals in the symptomatic compartment die 
 
ρ: rate at which infected individuals recover from disease and are removed 
 
σ: rate of symptom onset for infected individuals 
 
μ: rate at which false positives are returned to the Uninfected compartment 
 
Se: sensitivity of the screening test 
 
Sp: specificity of the screening test 
 
I(t): an indicator function which assumes value 1 if an exogenous shock takes place in 
cycle t; 0 otherwise 
 
X: number of imported infections in a given exogenous shock 
 

The model uses a cycle time of 8 hours. All rates are calculated per 8-hour cycle. 

 

Governing equations 

• Uninfected (t+1) = Uninfected (t) – New Infections – New FPs + Returning FPs – Exogenous 
Shocks 

U(t + 1) = U(t) ∙ �1-β 
A(t)

U(t) + A(t)� -U(t-1) ∙ τ ∙ (1-Sp) + µFP(t)-X ∙ I(t + 1) 

 
 

• Asymptomatic (t+1) = Asymptomatic (t) –symptoms - recoveries+ New Infections – TPs + 
Exogenous Shocks 

A(t + 1) = A(t) ∙ �1-σ-ρ + β
U(t)

U(t) + A(t)� -A(t-1) ∙ τ ∙ Se + X ∙ I(t + 1) 

  
• False Positives (t+1) = False Positives (t) – Returning FP+ New FPs  

FP(t + 1) = FP(t) ∙ [1-µ] +  U(t-1) ∙ τ ∙ (1-Sp) 
 
 

• True Positives (t+1) = True Positives (t) – Symptoms – Recovery + New TPs  
TP(t + 1) = TP(t) ∙ [1-σ-ρ] + A(t-1) ∙ τ ∙ Se 
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• Symptomatic (t+1) = Symptomatic (t) – Recovery – Mortality + New Symptoms  
  
S(t + 1) = S(t) ∙ [1-ρ-δ] + σ[TP(t) + A(t)] 

 
 

• Recovered (t+1) = Recovered (t) + New Recoveries  
R(t + 1) = R(t) +  ρ [TP(t) + A(t) + S(t)] 

 
• Deaths (t+1) = Deaths (t) +  New Deaths 

D(t + 1) = D(t) +  δS(t) 
 

 

• N = U + A + S + TP + FP + R + D =  Total population size (constant) 

 
Note that there is a lag of one cycle between the time that a test is conducted and the time that 
persons receiving a positive test result are moved to the isolation pool. 
 

 
 
Initial conditions: 

U(0) = 4,990 

A(0) = 10 

All other compartments are empty at time 0.  
 
 
 
Estimating Key Rate Parameters 
 
1)  σ: rate of symptom onset for infected individuals. We assumed that 30% of all infected 
individuals would eventually develop symptoms. In the absence of a screening program, this 
implies that σ / (σ+ρ) = 0.3. Assuming a mean recovery time of 14 days and computing all rates 
per 8-hour cycle yields ρ = 1/(3* 14 days) and we solve for σ = 0.0102. 
 
2) β: rate at which infected individuals contact susceptibles and infect them. The effective 
reproductive number Rt = β / (σ+ρ). We assumed Rt = {1.5, 2.5, 3.5}, which implies β 
 = {0.051, 0.085, 0.119}. Recall that all rates are estimated per 8-hour cycle.  
 
3) δ: rate at which individuals in the symptomatic compartment die. We assumed that the 
symptomatic case fatality risk was 0.05%. This implies [σ / (σ+ρ)]*[ δ / (δ+ρ)] = 0.0005 and 
permits us to solve for δ =  0.00004.   



 6 

 

 

 

Figure S1. Model schematic and input parameters 
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Figure S2: Expected daily occupancy of the isolation dormitory under worst case assumptions.  
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Figure S3: Expected daily occupancy of the isolation dormitory under best case assumptions. 
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